THE MECHANISMS
PROCESSES WHICH MAKE GLACIAL PERIODS MORE SEVERE
(Positive and Negative feedbacks in glacial periods)
Each glacial period is subject to positive feedback which makes it more severe and negative feedback which mitigates and (in all cases so far) eventually ends it.
What is a climate feedback?
This happens when a change in our climate causes an impact which changes our climate further — a knock-on effect which feeds back into our climate. There can be both negative and positive feedbacks:
* Negative feedback: This is an impact which offsets the prevailing change in climate. Under global warming, this would create a cooling effect, balancing out the changes. If the climate was getting colder, it would create a heating effect.
* Positive feedback: This is an impact which increases the change in the climate. It would add to global warming by creating further heating or, if our climate was cooling, would cool the climate further.
For example, suppose that a disturbance caused global temperatures to increase. In a warm atmosphere, more water could evaporate from the oceans, leading to larger amounts of water vapour in the atmosphere absorbing more radiation from the Earth's surface and emitting more radiation back, thereby enhancing the greenhouse effect and further increasing the air temperature. This would also make it possible for the air to hold even more water vapour as evaporation increases. If this feedback is not stopped, it would be considered a runaway greenhouse effect; one in which the Earth's temperature could increase until the oceans eventually evaporated away.
In addition to positive feedbacks, there are negative feedbacks that act to restore the climate system to its initial state. In the example of a warmer atmosphere with more water vapour, more clouds could form which would increase the amount of solar radiation reflected back to space and decrease the solar radiation absorbed by the Earth's surface, thereby slowing the rate of warming slow. Although it may not be enough to push the Earth completely back toward its initial state, it might lead to a new energy balance, one that is in equilibrium with an overall increase in energy.
It is still unclear how the climate on a regional or even global scale can change as rapidly as present evidence suggests. It appears that the climate system is more delicately balanced than had previously been thought, linked by a cascade of powerful mechanisms that can amplify a small initial change into a much larger shift in temperature and aridity. At present, the thinking of climatologists tends to emphasise several key components:
The circulation of the
·
If the sinking process in the North Atlantic
were to diminish or cease (due to too much freshwater), the weakening of the warm
Gulf Stream would mean that
·
A sudden "switching off” of deep water formation
in the North Atlantic could take the form of an exceptionally wet year on the
landmasses which have rivers draining into the Arctic sea (
·
Not only affecting Europe, Antarctica would be
even colder than it is now, due to lack of heat from the Gulf Stream water that
sinks in the north
·
A thermohaline circulation shutdown could have
other major consequences apart from cooling of Europe, such as an increase in
major floods and storms, a collapse of plankton
stocks, warming or rainfall changes in the tropics or Alaska and Antarctica (including those from intensified El Niño effect), more frequent and intense El Niño
events, or an oceanic anoxic event (oxygen (O2)
below surface levels of the stagnant oceans becomes completely depleted - a
probable cause of past mass extinction
events).
Carbon dioxide and
methane concentration as a feedback in sudden changes: Positive Feedback
Analysis of bubbles in ice cores
shows that at the peak of glacial phases, CO2 was about 30% lower
than during interglacial conditions.
This is thought to be due to some change in plankton activity or ocean
circulation patterns that occur under colder climates, drawing more carbon down
out of the atmosphere once climate began to cool. The lower carbon dioxide concentrations
resulting from this would cool the atmosphere, and allow more snow and ice to
accumulate on land. Relatively rapid
changes in climate, occurring over a few thousand years, could have resulted
from changes in the atmospheric CO2, concentration. The actual importance of carbon dioxide in terms
of the climate system is unknown, though computer climate simulations tend to
suggest that it directly cooled the world by less than 1 deg. C on average, but
due to amplification of this change by various factors within the climate
system such as the water vapour content, the resulting change in global climate
could have been more than 2 deg. C (ref.).
A problem with invoking carbon
dioxide as a causal factor in sudden climate changes is that it generally seems
to have varied too slowly, following on the timescale of millennia what often
occurred on the timescale of decades.
Methane, a less important greenhouse gas, was also 50% lower during
glacial phases, probably due to reduced biological activity on the colder,
drier land surfaces. However, it does
seem to have increased rapidly in concentration in association with changes in
climate, reaching its normal Holocene levels in around 150 years or less during
the global climate warming at the end of the Younger Dryas, around 11,500 years
ago (Taylor et l. 1997). Such sudden
rises in methane concentration were probably not important in affecting
climate; the warming effect of a 50% change in methane would have been much
less than an equivalent change in CO2, because methane is at such a
low overall concentration in the atmosphere.
It has been suggested that another mechanism, involving sudden and
short-lived releases of massive amounts of methane from the ocean floors, could
sometimes have resulted in rapid warming phases that do not leave any trace in
terms of raised methane levels in the ice core data, where the trapped gas
bubbles generally only indicate methane concentrations at a time resolution of
centuries rather than the few years or decades that such a "methane pulse”
might last for. However, more recently
obtained ice cores from areas where the ice sheet built up particularly rapidly
(Chapellaz et al. 1993, Taylor et al.
1997) show a more detailed time resolution of the record of methane
concentration in the atmosphere. These
records fail to show any evidence of sudden "bursts” of methane.
Surface albedo (reflectivity) of ice, snow and vegetation: Positive Feedback
The intensely white surface of sea
ice and snow will reflect back much of the sun’s heat, hence keeping the
surface cool. In general, it has the
potential to set off rapid climate changes because they can appear or disappear
rapidly given the right circumstances.
Ice sheets are more permanent objects which, whilst they reflect a large
proportion of the sunlight that falls upon them, take hundreds of years to melt
or build up because of their sheer size.
When present, sea ice or snow can have a major effect in cooling
regional and global climates, but with a slight change in conditions (slightly
warmer summer) they will each disappear rapidly, giving a much greater warming
effect because sunlight is now absorbed by the much darker sea or land cover
underneath. In an unusually cold year,
the opposite could happen, resulting in a cooler summer climate. It is possible that by slow changes over
millennia or centuries, the climate could be brought to a break point involving
a runaway change in snow and ice reflectivity over a few decades. These slow background changes might include
variations in the earth’s orbit (affecting summer sunlight intensity), or
gradual changes in carbon dioxide concentration, or in the northern forest
cover which affects the amount of snow that is exposed to sunlight.
It is possible that the relatively
long-lived ice sheets might occasionally help bring about very rapid changes in
climate, by rapidly "surging” outwards into the sea and giving rise to large
numbers of icebergs that would reflect back the sun’s heat and rapidly cool the
climate.
Holes containing cryocronite deposits
visible in the bed of a melt water lake on the Petermann glacier in north
Another, possible neglected,
factor in rapid regional or global climate changes may be the changes in the
albedo of the land surface that result from changes in vegetation or algal
cover on desert and polar desert surfaces.
An initial spreading of dark-coloured soil surface algae or lichens
following a particularly warm or moist year might provide a "kick” to the
climate system by absorbing more sunlight and thus warming the climate, and
also reducing the dust flux from the soil surface to the atmosphere. Larger vascular plants and mosses might have
the same effect on the timescale of years or decades. The recent detailed analysis of the ending of
the Younger Dryas by Taylor et al. 1997, suggests that warming occurred around
20 years earlier in lower and mid latitudes, perhaps due to some initial change
in vegetation or snow cover affecting land surface albedo. Some of the earlier climate warming events
during the last 130,000 years show similar signs of changes in dust flux
followed by changes in high-latitude temperature.
Processes which mitigate glacial periods: Positive Feedback
Ice sheets that form during
glaciations cause erosion of the land beneath them. After some time, this will reduce land above
sea level and thus diminish the amount of space on which ice sheets can
form. This mitigates the albedo
feedback, as does the lowering in sea level that accompanies the formation of
ice sheets.
Another factor is the increased
aridity occurring with glacial maxima, which reduces the precipitation
available to maintain glaciation. The
glacial retreat induced by this or any other process can be amplified by
similar inverse positive feedbacks as for glacial advances.
Water Vapour:
Positive Feedback
Water vapour is a more important
greenhouse gas than carbon dioxide, and as its atmospheric concentration can
vary rapidly, it could have been a major trigger or amplifier in many sudden
climate changes. For example, a change
in sea ice extent or in carbon dioxide would be expected to affect the flux of
water vapour into the atmosphere from the oceans, possible amplifying climate
changes that would otherwise have occurred anyway. Large rapid changes in vegetation cover might
also have added to these changes in water vapour flux to the atmosphere. Geologist W.S Broecker has suggested that
water vapour may act as a global "messenger”, co-ordinating rapid climate
changes, many of which seem to have occurred all around the world fairly
simultaneously, or in close succession.
Broecker notes the evidence for large changes in the water vapour
content of the atmosphere in terms of changes in the 180 content of tropical
high Andean ice cores, suggesting that the air’s overall content of water
vapour was about half of what it is at present.
Dust and particulates:
Positive Feedback
Particles of mineral dust, plus
the aerosols formed from fires and from chemicals evaporating out of vegetation
and the oceans, may also be a major feedback in co-ordinating and amplifying
sudden large climate fluctuations. Ice
cores from Greenland,
Wavering sun:
Positive Feedback
It is known that the Sun’s output
and the Earth’s relationship to the Sun are quite complicated to quantify. To begin with, the sun regularly fluctuates
in intensity by about a fourth of a percent during an eleven-year cycle. But also, studies of other stars have shown
that they can regularly go through extended quiet periods where a star’s
intensity fell by up to five percent for a number of years. These quiet periods are measured by observing
the reduction in sunspot activity of a star.
Of thirteen stars routinely measured since 1966, four have exhibited
this extended "flat” period throughout the Study (Gribbin 19). Not to mention the face that our Sun is
constantly getting hotter, and thus affecting Earth’s climate, it also has quite the potential (based on
studies of other similar stars) to fluctuate its intensity over years, decades,
and even centuries. It is believed that
these fluctuations are a function of the Sun’s rotation. More specifically, "the rotation speed of the
Sun is inversely correlated with sunspot numbers ”because an increased
rotation” inhibits transport of the magnetic field from the deep interior to
the surface and could cause a reduction of solar wind” (Grove 366-367).
Support for Sun fluctuations as
the source of the Little Ice Age comes from a recorded decrease in sunspots
during part of the Little Ice Age. As
early as the 1880’s, a German astronomer, Gustav Sporer, began wondering why it
was that very few sunspots were seen in parts of the 17th and 18th
century, even though there were "so many observers of the Sun, as were then
perpetually peeping in upon (it) with their telescopes in England, France,
Germany and Italy” (Eddy 1976, in Grove 366).
The prolonged absence of sunspots between 1645 and 1715 came to be known
as the Mauder Minimum. During this
period, based on drawing of early astronomers, the Sun’s rotations was faster
during the Little Ice Age than present, which accounts for the low numbers of
sunspots. Still, the Mauder Minimum does
not occur through the whole period of the Little Ice Age, thus making a
definitive correlation problematic.
Variations in earth’s orbit (Milankovitch cycles) :
Positive Feedback
A major background factor in some,
but not all, sudden climate switches seems to have been the set of
"Milankovitch” rhythms in seasonal sunlight distribution. Although this factor changes gradually over
many thousands of years, it may take the earth’s climate to a "break point” at
which other factors will begin to amplify change into a sudden transition.
The Milankovitch cycles are a set
of cyclic variations in characteristics of the Earth’s orbit around the
sun. Each cycle has a different length,
so at times their effects reinforce each other and at other times they
(partially) cancel each other.
It is very unlikely that the
Milankovitch cycles can start or end an ice age (series of glacial periods):
·
Even when their
effects reinforce each other they are not strong enough.
·
The "peaks” (effects
reinforce each other) and "troughs” (effects cancel each other) are much more regular and much more
frequent than the observed ice ages.
In these cases their ultimate
trigger must lie in other factors, probably a combination of many processes
that sometimes lines up to set the climate system on a runaway course in either
the direction of cooling or warming.
In contrast, there is strong
evidence that the Milankovitch cycles affect the occurrence of glacial and
interglacial period within an ice age.
The present ice ages are the most studied and best understood,
particularly the last 400,000 years, since this is the period covered by ice
cores that record atmospheric composition and proxies for temperature and ice
volume. Within this period, the match of
glacial-interglacial frequencies to the Milankovitch orbital forcing periods is
so close that orbital forcing is generally accepted.
In one of the Milankovitch
rhythms, the shape of the Earth’s orbit shifts from more elliptical to more
nearly circular. In another the degree
of tilt of the Earth’s axis changes, and in the third the timing of the seasons
changes relative to the Earth’s elliptical track nearer and further from the
sun. These rhythms, respectively work on
21,000, 42,000 and 100,000-year timescales, alter the relative amount of solar radiation
reaching the Earth’s Northern and Southern Hemispheres during summer and
winter. Times when summer sunlight in
the Northern Hemisphere is strong (but when the winter sunlight is
correspondingly weak) tend to be the times when the rapid global transition
from glacial to interglacial conditions occurs.
This is thought to be due to the effects of summer temperatures on
various of the factors mentioned above; for example, it ensures melting back of
snow and sea ice in summer, helping the earth to absorb more solar radiation
and thus to heat up further. It is
probably the combination of amplifying factors that brings the earth out of
glacial and into interglacial conditions.
These big glacial-interglacial transitions tend roughly to follow the
100,000-year timescale, when the three different rhythms (and possibly other
poorly understood factors such as the internal structure of ice-sheets) line up
to give a big increase in northern summer warmth, but the lesser individual
rhythms can also be detected in the temperature record on the 19,000 and
42,000-year timescales, and in fact the timing of interglacial onset tends to
more closely follow multiples of the 19,000 year cycle than an exact
correspondence to the 100,000 year cycle.
Volcanism: Positive
Feedback
It is well known that volcanic
injection of micro-particles and gases into the stratosphere reduce the amount
of solar energy that reaches the surface of the Earth. Successive volcanoes (or even one) can
temporarily dust the sky of the entire Earth and thus affect the Climate of the
Earth on a variety of time-scales. For
example, the eruption of
Nevertheless, an ice-core from
Crete, Greenland shows a rather provocative correlation between increased
volcanic activity and lower than average temperatures over the past fourteen
hundred years, there was lower-than average acidic levels of the Greenland core
(e), which refers to decreased amounts of sulphate in the atmosphere due to
volcanic activity, matches almost perfectly with the warm period of this
era. "The quietist period volcanically
was from CE 1100 to 1250 that is in the medieval warm period. The most active period volcanically came
between CE 1250 and 1500 and between CE 1550 and 1700, suggesting that it had
an important role in the causation of the Little Ice Age” (Grove 376).
Position of the continents:
Positive Feedback
The geological record appears to
show that ice ages start when the continents are in positions which block or
reduce the flow of warm water from the equator to the poles and thus allow ice
sheets to form. The ice sheets increase
the Earth’s reflectivity and thus reduce the absorption of solar
radiation. With less radiation absorbed
the atmosphere cools; the cooling allows the ice sheets to grow, which further
increases reflectivity in a positive feedback loop. The ice age continues until the reduction in
weathering causes an increase in the greenhouse effect.
There are three known
configurations of the continents which block or reduce the flow of warm water
from the equator to the poles:
·
A Continent sits on
top of a pole, as
·
A polar sea is almost
land-locked, as the
·
A super continent
covers most of the equator, as Rodinia did during the Cryogenian period.
Since today’s Earth has a
continent over the South Pole and an almost land-locked ocean over the North
Pole, geologists believe that Earth will continue to endure glacial periods in
the geologically near future.
Some scientists believe that the
Uplift of the Tibetan plateau and surrounding mountain
areas above the snowline
Matthias Kuhle’s geological theory
of Ice Age development was suggested by the existence of an ice sheet covering
the Tibetan plateau during the Ice Ages (Last Glacial Maximum). The plate-tectonic uplift of
Kuhle explains the interglacial
periods by the 100 000-year cycle of radiation changes due to variations of the
Earth’s orbit. This comparatively
insignificant warming, when combined with the lowering of the Nordic inland ice
areas and
Changes in Earth’s atmosphere
There is evidence that greenhouse
gas levels fell at the start of ice ages and rose during the retreat of the ice
sheets, but it is difficult to establish cause and effect. Greenhouse gas levels may also have been
affected by other factors which have been proposed as causes of ice ages, such
as the movement of continents and volcanism.
The Snowball Earth hypothesis
maintains that the severe freezing in the late Proterozoic was ended by an
increase in CO2 levels in the atmosphere, and some supporters of
Snowball Earth argue that it was caused by a reduction in atmospheric CO2. The hypothesis also warns of future Snowball
Earths.
The August 2009 edition of Science
provides further evidence that changes in solar insolation provide the initial
trigger for the Earth to warm after an Ice Age, with secondary factors like
increases in greenhouse gases accounting for the magnitude of the change.
William Ruddiman has proposed the
early anthropocene hypothesis, according to which the anthropocene era, as some
people call the most recent period in the Earth’s history when the activities
of the human race first began to have a significant global impact on the
Earth’s climate and ecosystems did not begin in the 18th century
with the advent of the Industrial Era, but dates back to 8,000 years ago, due
to intense farming activities of our early agrarian ancestors. It was at that time that atmospheric
greenhouse gas concentrations stopped following the periodic pattern of the
Milankovitch cycles. In his
overdue-glaciation hypothesis Ruddiman states that an incipient ice age would
probably have begun several thousand years ago, but the arrival of that
scheduled ice age was forestalled by the activities of early farmers.
Other factors include:
·
Cloud Cover
·
Eco Systems
·
·
Thermal Radiation
·
Methane (peat bogs,
organic matter and hydrates)